. E X O S I T E USA HEADQUARTERS TAIWAN OFFICE
275 Market St, Suite 535 WenXin Road, Section 4

Minneapolis, MN 55405 #955, 15F-5
+1.612.353.2161 Taichung, 406 Taiwan

+886.4.2247.1623

:MBEDOED 1ol
PROTOCOLS

|
SN BN B F . - I
. - B X R A - V' '
) -
. o r - e vy # | !
a L fF 7w
g iy A
. 8 A { : "\ L
b My w5V, <
34s | g’ '
'- 'f\ -’ 'i
N W ar !)
. : Il iy
’ "' y “"' R0
be l £ (’l | P, ; 1
: - I ".' | -
1 ' 2/ I G

WHITE PAPER

RELEASED: JANUARY 2016
Author: Patrick Barrett

 EXOSITE

TABLE OF CONTENTS

1. INTRODUCTION coooseeeeeeeee 1
2.PROTOCOL FEATURES FOR loT ... 1
2.1 Standardization............ccccceeeieiieiiiieieeee 2
2.2 LoW Latencycccovveeiieieiiieiie e 2
2.3 Low Data Overheadcccocveviviienirnnnns 2
2.4 LoW POWEr USEcooceviieiiieeeiee e 2

3. PROTOCOLS 3
3.1 Internet Protocolccccooeeeviiiicinnnn, 3
3.2 Transport Protocols..........cccccooeieiiinicnees 3
B.2T UDP ..o 3

B.2.2 TCP oo 4

3.3 Application Protocols..........c.c.ccceeeevieennenne. 4
3.3.1. The Old Standards........cccccovviviviininnineieiciiens 4
BBTTHTTP oo 4
BBT2XMPP ..o 5

3.3.2The NeW KidSccovoveeeieieiieieiceieeeee e 5

R Y (0] A 6

8322 COAP.....ooooooooeoeeeeeeeeeeeeeeeee e 6

3.3.2.3 WEDSOCKEL ..o 8

4. SUMMARY ..ot 8

POWERING THE lol
GENERATION OF BUSINESS

Y EXOSITE

1. INTRODUCTION

What is the Internet of Things (IoT)? It is a global
network of physical devices communicating with
each other, usually through powerful cloud appli-
cations that add data processing, aggregation, and
analysis to provide business insights and benefits
that would not otherwise be feasible.

A classic example of an loT product is a light bulb
that can be controlled remotely through a connec-
tion to the Internet. This could be accomplished
directly by a user on a remote device to turn on a
light before getting home. It could also be accom-
plished automatically by intelligence in the cloud
that uses data from other sensors around the
house and other Internet services to predict what
the user will want.

loT also includes more complex and less obvious
examples. For instance, weather forecasting and
real-time weather tracking utilize loT to collect
and collate weather data from ubiquitous sensors
and devices connected to the cloud. That weather
data can then be processed and analyzed to make
well-informed predictions and decisions.

In order for computers and loT devices to interact
intelligently in this way, they use protocols in much
the same way that people share common languag-
es that allow them to communicate. And, just as
many languages throughout the world can express
the same meaning but are completely incompatible
with each other, computers and connected devic-
es experience the same communication hurdles.
Technology is continuously changing; new appli-
cations and devices require new protocols in order
to communicate efficiently over the Internet, while

All content copyright © EXOSITE 2016. All rights reserved.

providing users with the connectivity, security, and
ease of deployment for their products and services
through the cloud.

However, because IoT systems are usually com-
prised of low-cost, low-power, low-performance
embedded devices, the suitability of protocols
that are ideal or, in some cases, even possible to
use is somewhat limited. Additionally, the need to
communicate securely complicates things further.
Potential attackers of loT systems have substantial-
ly more computing power at their disposal thanks
to advances in technology and pose a very critical
challenge to secure communication, especially with
the type of low-powered devices that are generally
well-suited for loT.

This white paper will provide an overview of some
of the protocols that are common in loT, and offer
insights into important features that should be
taken into consideration when selecting a protocol
for use in a connected solution.

2. PROTOCOL
FEATURES FORIOT

At a high level, a good protocol for IoT enables the
use of inexpensive, low-power devices and provides
high performance in a variety of end-use applica-
tions while maintaining a high level of security and
reliability. This is a good starting point to describe
the needs of all loT applications; however, the way
these are achieved varies greatly depending on the
needs of specific use cases. Below is an exam-
ination of several features that will provide a good
baseline for most general use cases.

EXOSITE.COM | PAGE1

https://exosite.com

Y EXOSITE

2.1 STANDARDIZATION

loT protocols are like human languages; you can
only communicate with others that speak the
same language. Selecting standardized protocols
for an loT device increases the number of devices
and services with which it can talk. Unfortunately,
a single protocol has not been universally accept-
ed for all use cases and probably never will. But in
order to interoperate with other devices or avoid
implementation of a protocol from scratch, select-
ing an off-the-shelf, standard protocol can save
a significant amount of development time and
money

2.2 LOW LATENCY

Latency is the amount of time it takes for a device
to react to an external event. In the most basic
example, latency could be measured by the length
of time it takes a lamp to turn on when a user
taps a button in a phone app. Latency can be a
big problem for some applications if reactions are
user facing. For loT devices, network latency is by
far the biggest component of total system latency.
As such, it is one of the most important factors
to consider when selecting specific protocols, as
latency can have a significant impact on the per-
formance of the overall system.

2.3 LOW DATA OVERHEAD

Data overhead is the amount of data that is trans-
mitted above and beyond the actual information
being conveyed from a sender to its recipient. In
a real-world system, overhead will never be zero,
but it is important to select a protocol that is not
unnecessarily verbose for a variety of reasons.

All content copyright © EXOSITE 2016. All rights reserved.

First, keeping communications as lean as possi-
ble can help ensure systems remain economical.
Many loT devices use cellular connections for
communication, where users pay for every byte of
information that the device uses. This means there
is a direct relationship between cost and data use.

Second, low data overhead can help avoid det-
rimental effects on performance even in cases
where a device is not on a metered connection.
Based on the general prediction that there will
be billions of loT devices developed in the next
few years, it is reasonable to expect that a single
house or business may soon contain hundreds of
loT devices. If individual devices consume large
amounts of data, it could adversely affect the Inter-
net connection they share, slow the performance
of loT applications and other Internet users, and
result in a poor user experience.

2.4 L0W POWER USE

Low power use is closely related to low latency and
low data overhead. The more time a device spends
sending/receiving data or waiting for responses,
the more power it draws from the battery. As a
result, users are forced to replace or recharge bat-
teries more often.

In addition to limiting the latency and data over-
head to improve power use, it is possible to select
protocols that are specifically designed to work
around very aggressive sleeping of nodes and
other power-saving features that make more tradi-
tional protocols unworkable.

EXOSITE.COM | PAGE2

https://exosite.com

Y EXOSITE

3. PROTOCOLS

The Internet is made up of many different proto-
cols, each with their own purpose. The standard
model of the Internet breaks these protocols into
layers based on the functions that they provide.
This section will identify some of the protocols that
make up the Internet as a whole, including relevant
protocols from the Internet layer, transport layer,
and application layer. It will also discuss the trade-
offs of various application-layer protocols that are
well suited for use in IoT, including the effects of
the various transport- and Internet-layer protocols
on which they depend.

3.1INTERNET PROTOCOL

To be part of loT, by definition, devices must
have a connection to the Internet. This means all
loT devices must be able to talk Internet Protocol
(IP). IP defines both how a device is uniquely identi-
fled on the Internet and how the series of networks
that make up the Internet will get messages from
one device to another.

Currently, there are two different versions of IP
that are in active use, namely IPv4 and IPv6. The
Internet as a whole is slowly migrating away from
IPv4 towards IPv6. However, because the Internet
is such a large and diverse collection of individually
owned networks, it will be many years before sup-
port for IPv4 can be ignored.

While there are a large number of differences
between IPv4 and IPv6, the vast majority of loT
developers will only notice one major difference:
that addresses are much larger with IPv6. Where
IPv4 used addresses that were 32 bits, IPv6 uses

All content copyright © EXOSITE 2016. All rights reserved.

addresses that are 128 hits, allowing many more
devices to be connected to the network.

Embedded developers generally do not need to
worry about this layer of protocol, as an IP stack
is often supplied by hardware interface vendors
either in the hardware or as part of the software
development kit (SDK). Developers simply have the
option to choose whether or not the hardware they
select supports IPv6. If the anticipated lifetime of
a device exceeds the next three-to-five years, IPv6
support should be a requirement.

3.2 TRANSPORT PROTOCOLS

The next layer in the stack is the transport layer,
which provides the common features that all high-
er-level protocols need. This prevents the need
to re-implement these features over and over in
each application protocol. This section contains
a brief explanation of the User Datagram Proto-
col (UDP) and the Transmission Control Protocol
(TCP) transport protocols. Although a transport
protocol is usually never a direct requirement, the
background information below provides an under-
standing of the trade-offs between UDP and TCP
when selecting between the application protocols
that leverage them.

3.21UDP

UDP is the most basic transport protocol and
provides just two features on top of IP. The first
is data integrity that, through the use of check-
sums, ensures that the received data is the same
as the data that was sent. The second is applica-
tion muxing that, through the use of port numbers,
allows the network stack to direct individual pack-

EXOSITE.COM | PAGE3

https://exosite.com

Y EXOSITE

ets back to the application, or subsystem in an loT
device, that requested them.

This relative lack of features makes UDP incredibly
simple to implement on top of IP, adding basically
no hardware requirements to the application. How-
ever, it does lack some features that loT applica-
tions are very likely to need, which the higher-level
protocols will need to make up for.

3.2.2TCP

TCP is UDP's big brother. At a high level, it provides
reliable delivery of streams of data. It ensures that
data is delivered exactly as it was sent and in the
order it was sent. It also automatically re-requests
any data that was lost or corrupted in transport, in
addition to many more subtle features.

A TCP stack is much more complicated than UDP
to implement and will require more hardware
resources to use. However, this burden is often
acceptable, as many applications will require some
of the features that TCP provides. With the increas-
ing availability of more powerful hardware at lower
costs, the burden of TCP’s additional features that
are not required in a particular application are
becoming less of a factor. There are even hard-
ware network interfaces that include a full TCP
stack, offloading all of the transport-level require-
ments from host devices.

3.3APPLICATION PROTOCOLS

While there are many application protocols that
can be used to send arbitrary data between a
client and a server over the Internet (e.g., SMTP
for email), some protocols are more suitable than
others when it comes to loT deployments. This

All content copyright © EXOSITE 2016. All rights reserved.

section divides these protocols into two catego-
ries, older web protocols and newer protocols
designed specifically for loT, and discusses exam-
ples of each.

3.3.1 THE OLD STANDARDS

The development of the web provided some
well-established protocols that can be used with
loT devices, including the Hypertext Transfer Pro-
tocol (HTTP) and the Extensible Messaging and
Presence Protocol (XMPP). The main benefit of
these protocols is that they are well understood
and supported, especially for the server-side eco-
system. However, the reuse of existing technology
with new applications does require some trade-
offs that should be considered.

3.311HTTP

HTTP is the poster child of well-understood and
well-supported protocols and is the applica-
tion-layer protocol that runs almost the entirety
of the web. HTTP uses a client-server model to
describe how its requests are made. A client (tra-
ditionally a user's web browser) makes a request
to a server asking for a resource, and the server
responds with the current state of that resource.
This model works well for traditional web browsing
because there is a user directing the browser as to
when it should make requests for certain resourc-
es. As such, it will be the lowest common denom-
inator in supported protocols for the foreseeable
future.

However, it also has its limitations and challenges
when it comes to loT use cases. When loT devices
are involved, there is not always a user to guide the

EXOSITE.COM | PAGE4

https://exosite.com

Y EXOSITE

actions, and the device must decide when it should
request updates to a resource from the server on
its own. And for most applications where a device
needs to react to a remote input like an app turning
on a light, an loT device will always need to know
the most up-to-date value so as to provide the low
latencies that users will expect; nobody wants to
wait thirty seconds for their lights to turn on after
pressing a button to do so. That means that once a
device decides to request an update and the server
returns a response, it must repeat the request
almost immediately since it has no other way of
knowing if a server-side resource has changed.

Ideally, the server would instead notify the device
when a resource changed. Unfortunately, the archi-
tecture of the Internet prevents this when using
HTTP. Servers are almost always unable to send
arbitrary messages to clients without first receiv-
ing a request from the client due to the security
issues that might arise. So, HTTP is left using a
model thatis less than ideal because of the amount
of data overhead it creates. With a large number of
devices operating in this manner, network latency
and congestion can quickly become an issue. This
problem is exacerbated by the fact that HTTP is a
very verbose, text-based protocol that adds a sig-
nificant amount of overhead in each request. For
example, a simple request to read an on/off state
takes 412 bytes of data for each request/response
when using Exosite's simple HTTP data API.

Also, as a text-based protocol, HTTP is actually
very hard for an embedded system to parse cor-
rectly. There are problems with encoding, because
users must scan for special characters that define
the divisions between certain parts of the mes-
sage. It takes time and excess memory to re-en-

All content copyright © EXOSITE 2016. All rights reserved.

code the different parts of the messages, and
there are also no defined maximums for the differ-
ent components of the messages. This increases
the complexity of implementations and can cause
users of a given library headaches depending on
how that particular library decides to deal with the
problem.

Although these problems seemingly suggest
HTTP is not an ideal protocol choice, they can
sometimes be accommodated. And, because of
external factors like the requirements of some net-
works or the availability of manufacturer-provided
system libraries, HTTP may be a viable option in
some cases.

3.3.1.2 XMPP

XMPP, previously known as Jabber, is a protocol
originally designed for use in instant messaging.
Early loT developers were interested in XMPP
because of its real-time nature. It provides low
latency communication back to a single, central
server. Exosite offers an XMPP-based API that was
developed for use in applications where latency is
the highest priority.

However, XMPP has a number of problems that
make it somewhat undesirable for embedded IoT
applications. As an XML-based protocol, XMPP is
very verbose, even more so than HTTP, and has
heavy data overhead. A single request/response
exchange to send one byte of data from a device to
the server is more than 0.5 kB.

There is a draft specification that would compress
XMPP using an XML encoding called Efficient XML
Interchange (EXI). But even with EXI, the same one
byte of data gets hundreds of bytes of protocol

EXOSITE.COM | PAGES

https://exosite.com

Y EXOSITE

overhead from XMPP alone. EXI is also a much
harder format to process than other options now
available. Because of these inherent problems, it
is generally recommended to avoid using XMPP in
embedded loT applications.

3.3.2 THE NEW KIDS

With the rapid growth of IoT, new protocols have
been created specifically to meet the needs of
loT systems and devices, including the Message
Queue Telemetry Transport (MQTT) protocol and
the Constrained Application Protocol (CoAP).
These protocols offer the benefit of being designed
to be efficient and powerful with the types of work-
loads found in loT. However, they do fall behind in
the areas of platform library support and general
maturity of design when compared to the more
established protocols.

3.3.21M0OTT

MQTT is a publish/subscribe messaging protocol
designed to be very simple, lightweight, and easy to
implement. The protocol was originally developed
by IBM, although control was recently given to
the OASIS consortium. The entire MQTT protocol
specification is relatively short and written in a way
that makes it easily understood. Someone relative-
ly technical can read the whole protocol specifica-
tion in a day or two and possibly even implement it
in under a week.

However, this brevity of the specification can also
be challenging. Some areas are too ambiguous and
generally lacking in basic features that would be of
substantial benefit in real-world deployments. One
of the biggest pain points in MQTT is the absence

All content copyright © EXOSITE 2016. All rights reserved.

of useful error-handling. Most error conditions are
handled by simply disconnecting the TCP session
without any indication about why it happens.

As a result, MQTT works well for small, quickly
implemented, one-off deployments of a single
device or implementation where the client and
server are both controlled. It is not ideal for situ-
ations in which a heterogeneous set of clients
require different protocol implementations to talk
to a single service. Luckily there are better options
for this.

3.3.2.2 COAP

CoAP is a new protocol that was recently final-
ized by the Internet Engineering Task Force in
memo RFC 7252. CoAP was designed for use with
resource-constrained embedded devices, both
in terms of computation and connectivity, while
remaining very extensible. It was also designed
specifically to accommodate problems that are
likely to be encountered in a global IoT device fleet
deployment.

The semantics of CoAP were designed to close-
ly model those of HTTP, so developers that are
already experienced with HTTP can get up to
speed more quickly, and applications developed
using HTTP can be directly reapplied to applica-
tions using CoAP. However, unlike like HTTP, which
is text-based and uses TCP, CoAP is a binary pro-
tocol that is transported over UDP. Being a binary
protocol reduces its data overhead, while its use
of UDP increases its flexibility in communication
models and its ability to reduce latencies.

This means CoAP is not limited to just the seman-
tics of HTTP. One of the benefits of using HTTP

EXOSITE.COM | PAGE6

https://exosite.com

Y EXOSITE

semantics on top of CoAP’'s UDP rather than
HTTP's TCP is that a device can more easily use
the same protocol code to talk to the cloud and
other devices on the local network. It can even
engage in group communication with IP multicast.
This is a boon to applications where devices on the
same local network are expected to work together,
in addition to working through the cloud. A single
protocol and, thus, a single protocol implementa-
tion can be used to do both styles of communi-
cation, reducing both development time and the
resources required on the devices.

Additionally, the use of UDP allows for further
optimization of an embedded device's power con-
sumption, without adding latency. Since it is not
necessary to keep a TCP connection established, a
device can sleep until it actually has something to
report and must only remain awake for one round
trip's worth of latency with full reliability. For the
most power-sensitive applications, devices can be
woken up only long enough to send data, without
waiting for a response to come back. Occasional-
ly, a device may wait for the response as a “tracer
round” to make sure some of the requests are
making it to the server and ensure some level of
reliability.

Finally, the extensibility of COAP provides features
like the ability to flexibly update the format of the
data that a device uses to communicate, which can
be critical to businesses that already have devic-
es deployed. For this, COAP has an option called
‘Accept” that allows at client to request a format
for data that it is requesting from the server. The
protocol even has a way to denote which options
are safe to ignore. This allows new options to be
added to the protocol in a way that existing devices

All content copyright © EXOSITE 2016. All rights reserved.

will to continue to work, while adding features of
which new devices can take advantage. Because
loT devices may last many years, during which
time technologies and business requirements will
undoubtedly change, CoAP's extensibility in this
and similar ways can enable rock-solid, future-com-
patible loT deployments.

With all these benefits of CoAP, it may seem like
an ideal choice for all loT communication needs.
However, there are a few factors that must be con-
sidered. First, using UDP instead of TCP does have
its downsides. UDP does not have the same guar-
antees that TCP supplies. To overcome this, CoAP
takes on the features that are necessary for its
specific needs, ignoring those that are not helpful
with loT-style communication.

Additionally, without TCP, standard Transport Layer
Security (TLS) (previously known as Secure Sock-
ets Layer (SSL)) cannot be used to secure com-
munication. Datagram Transport Layer Security
(DTLS), a newer derivative of TLS that has a few
additional semantics added to allow it to work over
UDP, must be used. Because of its relative lack of
age, it has a limited amount of existing support. For
instance, Exosite is not aware of any Wi-Fi hard-
ware modules that have DTLS support built-in, so
a software DTLS stack on a host system may be
necessary for secure communication.

Also, similar issues exist for CoAP itself, as at the
time this document was written, the CoAP spec-
ification had only been finalized for a little more
than a year. As a result, fewer options are available
for existing libraries and solution support as com-
pared to some of the more traditional protocols.

EXOSITE.COM | PAGE7

https://exosite.com

Y EXOSITE

3.3.2.3 WEBSOCKET

WebSocket might be a bit of an unsuspected addi-
tion to this list for some. WebSocket is not a pro-
tocol that was designed for use in loT but instead,
as the name suggests, for use with the web. It lets
web browsers and web servers communicate con-
tinuously using a message-based, bi-directional
channel.

The biggest benefit of using the WebSocket proto-
col is its network compatibility. A WebSocket con-
nection is established first as an HTTP request, so
if a network can support an HTTP request, it can
almost certainly support WebSocket. The serv-
er-side library support is also a major benefit to
the Websocket protocol, making implementation
on a server much easier thanks to the wide deploy-
ments of existing WebSocket servers for the web.
Like HTTP, WebSocket uses TCP and, thus, can use
TLS and take advantage of its wider availability in
existing network stacks.

The biggest downside to using WebSocket is the
weight of the protocol and the hardware require-
ments that it brings with it. WebSocket requires a
TCP implementation, which may or may not be a
problem, but it also requires an HTTP implemen-
tation for the initial connection setup. Additionally,
Websocket was not designed with the requirements
of highly constrained embedded systems in mind,
so implementations may not be straightforward.
And, unfortunately, there are currently no useful,
open source WebSocket implementations targeted
at embedded systems.

Again, as it was with HT TP, these problems may not
be impossible to overcome. The decision to use the
WebSocket protocol will depend heavily on outside

All content copyright © EXOSITE 2016. All rights reserved.

factors and those factors may make WebSockets
an attractive option.

4. SUMMARY

Because the requirements of individual loT imple-
mentations can vary significantly, it is impossible
to suggest a single protocol that should be used in
every situation. Instead, this document has provid-
ed a high-level overview of the features and bene-
fits of several protocols that should be taken into
consideration when selecting one for use in a con-
nected solution.

To help meet the needs of any implementation,
Exosite offers several flexible APl options, including
CoAP, HTTP, and WebSocket. The Exosite loT plat-
form provides a modular, customizable architecture
that enable companies to quickly and easily deploy
loT devices and services that deliver the reliability,
security, scalability, and flexibility they require.

EXOSITE.COM | PAGE8

https://exosite.com

S EXOSITE

REV
YOU

USA HEADQUARTERS

275 Market St, Suite 535
Minneapolis, MN 55405

+1.612.353.2161

R BUS

TAIWAN OFFICE

WenXin Road, Section 4
#955, 15F-5
Taichung, 406 Taiwan

+886.4.2247.1623

JLUTIONIZE

\

Wl

NN

T+

ol

Engage with our team of world-

renowned experts to learn more.

EXOSITE.COM | +1.612.353.2161

https://exosite.com

	Table of Contents
	1. Introduction
	2. Protocol Features for IoT
	2.1 Standardization
	2.2 Low Latency
	2.3 Low Data Overhead
	2.4 Low Power Use

	3. Protocols
	3.1 Internet Protocol
	3.2 Transport Protocols
	3.2.1 UDP
	3.2.2 TCP

	3.3 Application Protocols
	3.3.1 The Old Standards
	3.3.1.1 HTTP
	3.3.1.2 XMPP

	3.3.2 The New Kids
	3.3.2.1 MQTT
	3.3.2.2 COAP
	3.3.2.3 Websocket

	4. Summary

